Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Death Dis ; 14(12): 805, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062036

RESUMEN

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.


Asunto(s)
Ataxia de Friedreich , Enfermedades Neurodegenerativas , Humanos , Transporte de Electrón , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Membranas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo
3.
Cancers (Basel) ; 13(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673681

RESUMEN

Neurofibromatosis type 1 (NF1) is caused by heterozygous loss of function mutations in the NF1 gene. Although patients are diagnosed according to clinical criteria and few genotype-phenotype correlations are known, molecular analysis remains important. NF1 displays allelic heterogeneity, with a high proportion of variants affecting splicing, including deep intronic alleles and changes outside the canonical splice sites, making validation problematic. Next Generation Sequencing (NGS) technologies integrated with multiplex ligation-dependent probe amplification (MLPA) have largely overcome RNA-based techniques but do not detect splicing defects. A rapid minigene-based system was set up to test the effects of NF1 variants on splicing. We investigated 29 intronic and exonic NF1 variants identified in patients during the diagnostic process. The minigene assay showed the coexistence of multiple mechanisms of splicing alterations for seven variants. A leaky effect on splicing was documented in one de novo substitution detected in a sporadic patient with a specific phenotype without neurofibromas. Our splicing assay proved to be a reliable and fast method to validate novel NF1 variants potentially affecting splicing and to detect hypomorphic effects that might have phenotypic consequences, avoiding the requirement of patient's RNA.

4.
Free Radic Biol Med ; 166: 277-286, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667628

RESUMEN

Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Ataxia , Homeostasis , Humanos , Enfermedades Mitocondriales/genética , Debilidad Muscular , Ubiquinona/deficiencia
5.
FASEB J ; 35(3): e21362, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33629768

RESUMEN

Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/biosíntesis , Metabolismo Energético , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/fisiología , Membranas Mitocondriales/metabolismo , Línea Celular , Ataxia de Friedreich/patología , Humanos , Proteínas de Unión a Hierro/genética , Membranas Mitocondriales/patología , Frataxina
6.
Oxid Med Cell Longev ; 2019: 3904905, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379988

RESUMEN

Coenzyme Q (CoQ), a redox-active lipid, is comprised of a quinone group and a polyisoprenoid tail. It is an electron carrier in the mitochondrial respiratory chain, a cofactor of other mitochondrial dehydrogenases, and an essential antioxidant. CoQ requires a large set of enzymes for its biosynthesis; mutations in genes encoding these proteins cause primary CoQ deficiency, a clinically and genetically heterogeneous group of diseases. Patients with CoQ deficiency often respond to oral CoQ10 supplementation. Treatment is however problematic because of the low bioavailability of CoQ10 and the poor tissue delivery. In recent years, bypass therapy using analogues of the precursor of the aromatic ring of CoQ has been proposed as a promising alternative. We have previously shown using a yeast model that vanillic acid (VA) can bypass mutations of COQ6, a monooxygenase required for the hydroxylation of the C5 carbon of the ring. In this work, we have generated a human cell line lacking functional COQ6 using CRISPR/Cas9 technology. We show that these cells cannot synthesize CoQ and display severe ATP deficiency. Treatment with VA can recover CoQ biosynthesis and ATP production. Moreover, these cells display increased ROS production, which is only partially corrected by exogenous CoQ, while VA restores ROS to normal levels. Furthermore, we show that these cells accumulate 3-decaprenyl-1,4-benzoquinone, suggesting that in mammals, the decarboxylation and C1 hydroxylation reactions occur before or independently of the C5 hydroxylation. Finally, we show that COQ6 isoform c (transcript NM_182480) does not encode an active enzyme. VA can be produced in the liver by the oxidation of vanillin, a nontoxic compound commonly used as a food additive, and crosses the blood-brain barrier. These characteristics make it a promising compound for the treatment of patients with CoQ deficiency due to COQ6 mutations.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ubiquinona/análogos & derivados , Ácido Vanílico/farmacología , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Células HEK293 , Humanos , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia , Ubiquinona/biosíntesis , Ubiquinona/genética , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...